Mobilization of nickel in a German aquifer induced by industrial agriculture?

Tim Mansfeldt¹, Heike Mandt¹, Katrin Matern¹, Herbert Röhm², Jörg Elbracht², Irene Bitz², Maria Sitnikova³ and Reiner Dohrmann^{2,3}

¹ Soil Geography/Soil Science, Department of Geosciences, University of Cologne
² State Office for Mining, Energy und Geology (Lower Saxony), Hannover
³ Federal Institute for Geosciences and Natural Resources, Hannover

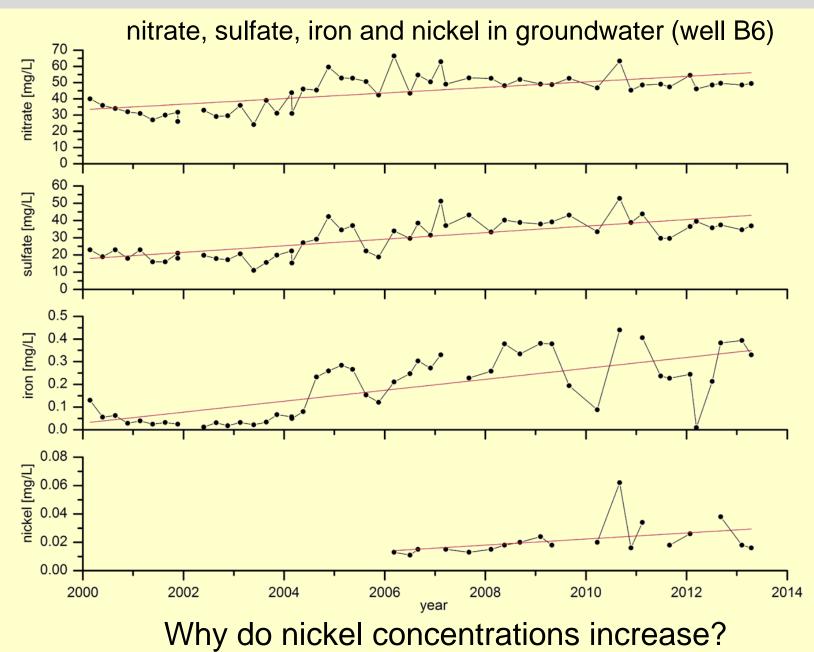
Research area in county Grafschaft Bentheim

2

Farms and livestock

Farms and livestock

County Grafschaft Bentheim


	2001	2010	
number of farms	1,975	1,327	-32.8%
agricultural area [ha]	59,841	57,410	-4.1%
number of cattle	28,047	98,907	+253%
number of swine	401,704	408,652	+1.7%
number of chicken	4,267,493	5,296,578	+24.1%

Agrarstrukturerhebungen 2003 und 2012 des NLS (Niedersächsisches Landesamt

für Statistik) und Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen (LSKN)

→ strong increase in the use of organic fertilizers (liquid manure, residues of biogas plants)
→ high inputs of nitrogen (NH₄⁺, NO₃⁻, organic N)

Background and motivation

Threshold values

Drinking Water Ordinance 2001 (amendment to the act in 2011)

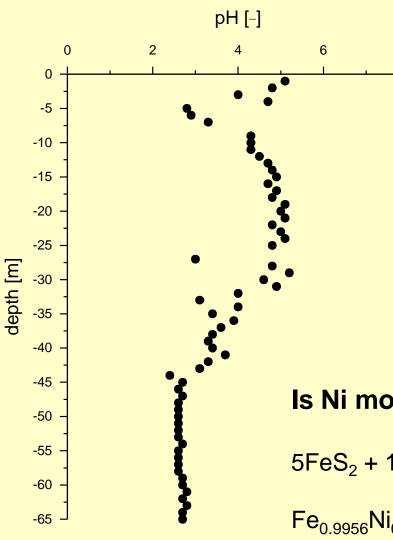
nickel

 \rightarrow 20 µg/l (until 2011: 50 µg/l)

nitrate

 \rightarrow 50 mg/l

sulphate


 \rightarrow 250 mg/l

 \rightarrow wells in this region are polluted with Ni

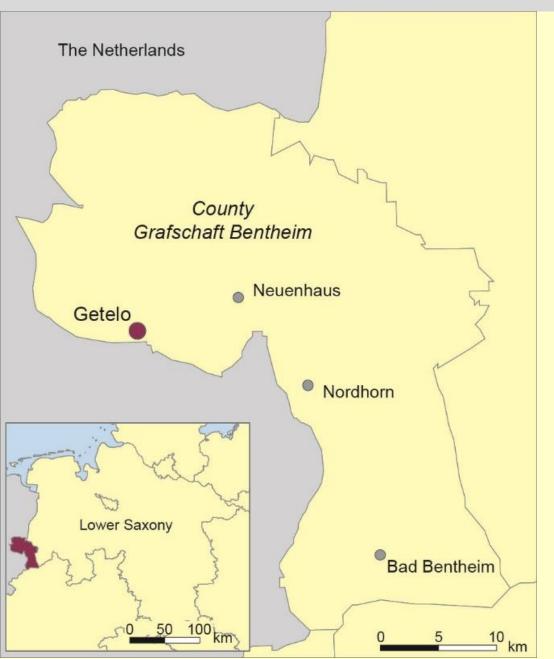
Hypotheses

pH (CaCl₂) after aerobe storage since 2009 (B14)

8

- \rightarrow extremely low pH (5 to 7 m; 42...65 m)
- \rightarrow acid sulfate soils, coal-mining affected soils
- → hypothesis: oxidation of reduced sulfur compounds

 $FeS_2 + 3.5O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$


aerobe pyrite oxidation

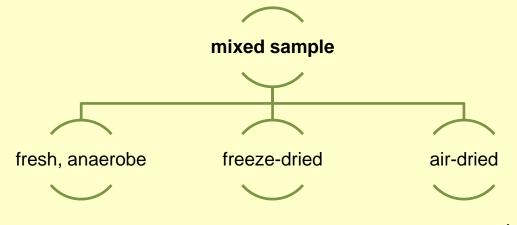
Is Ni mobilized by the anaerobe oxidation of pyrite?

 $5FeS_2 + 14NO_3^- + 4H^+ \rightarrow 5Fe^{2+} + 7N_2 + 10SO_4^{2-} + 2H_2O$

 $Fe_{0.9956}Ni_{0.0020}Co_{0.0024}As_{0.0038}$ (Cremer et al. 2002)

Drilling site

Core drilling

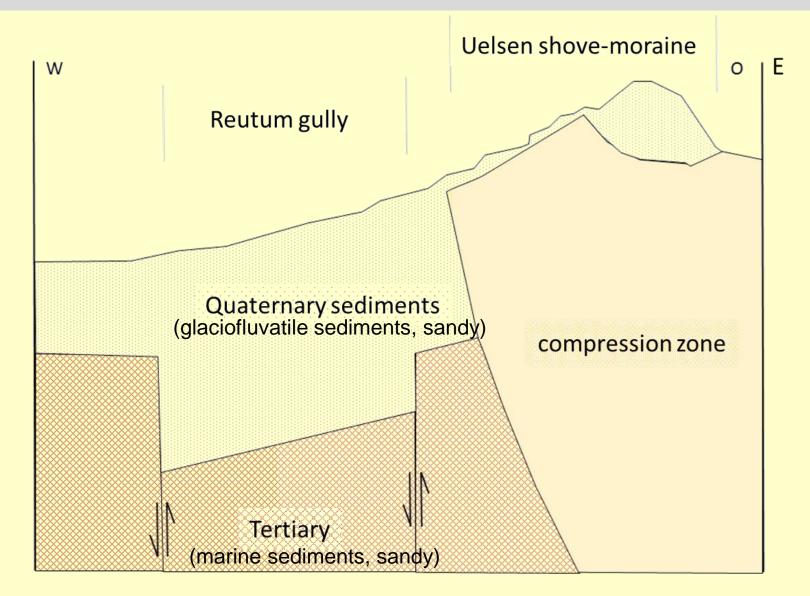


- \rightarrow May, 5 to 9, 2014
- \rightarrow 0 to 65 m depth
- \rightarrow 0 to 2 m mixed sample
- \rightarrow 63 core samples (1 m length,
 - 0.1 m diameter)

Sample storage and preparation

Sample preparation and analyses

- pH in 0.01 *M* CaCl₂
- water-soluble anions
- (chloride, nitrate, sulfate)
- C, N, S
- oxalate-soluble Fe and Ni (Fe_o)
- dithionite-soluble Fe and Ni (Fe_d)
- NH₄NO₃-soluble Fe and Ni
- <u>sulfide</u>


- particle-size distribution
- major and minor elements (XRF)
- Ni, Co, As (microwave induced

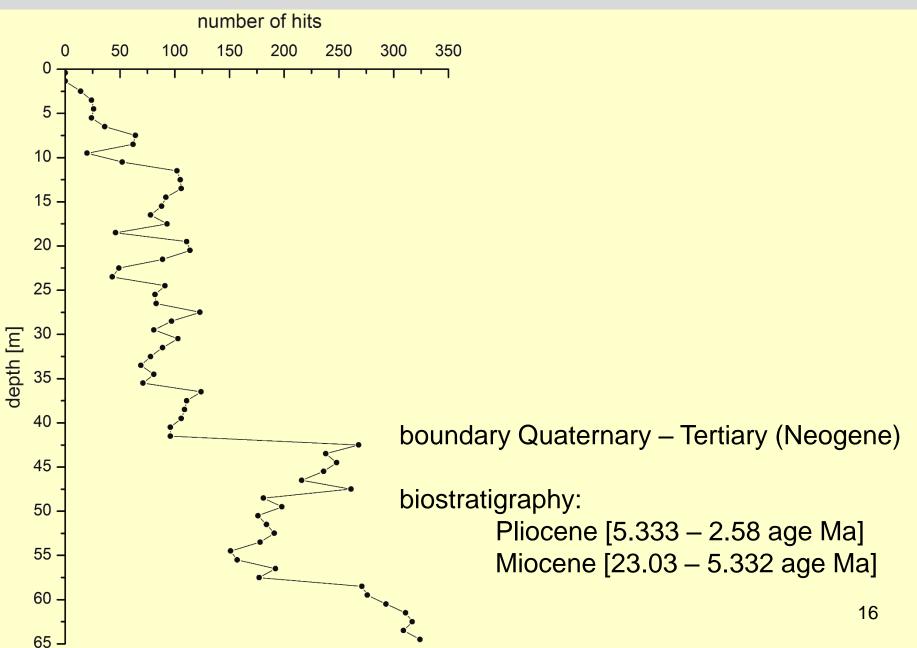
total digestion with HNO₃/HCI/HF)

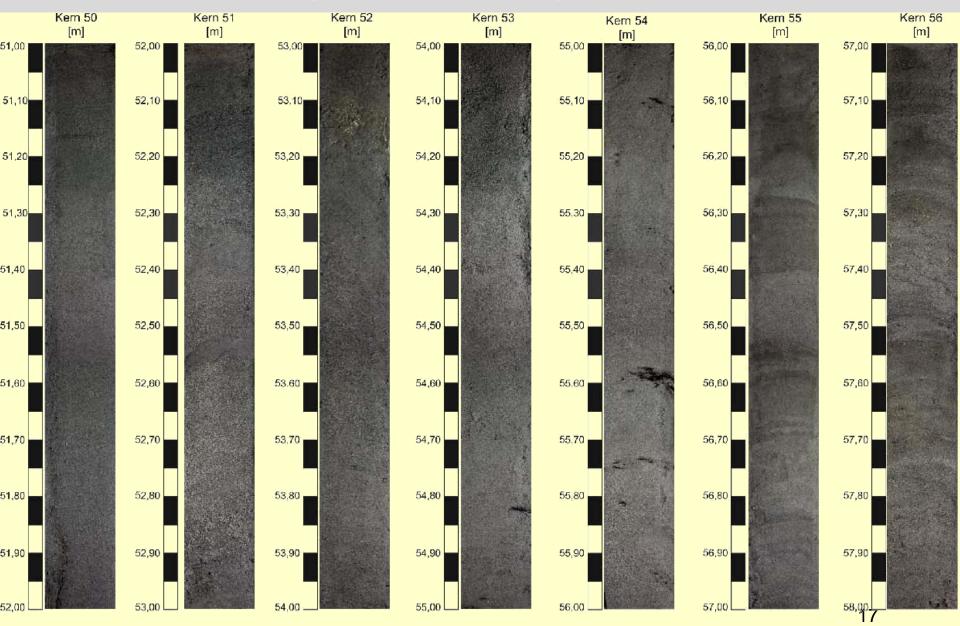

- biostratigraphy
- <u>mineralogy (heavy minerals)</u>

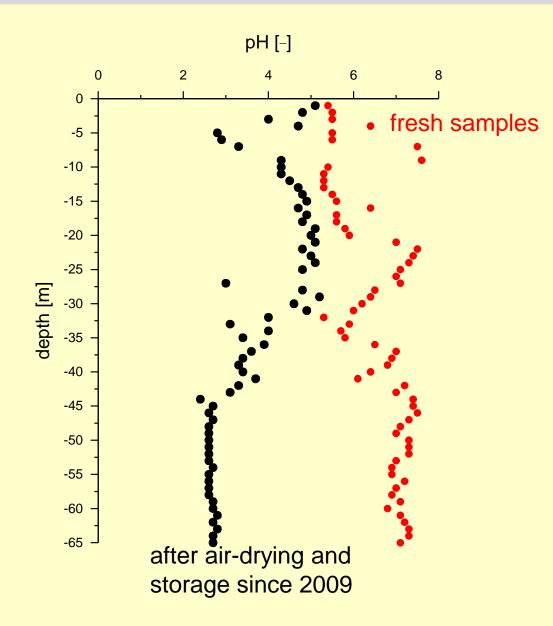
focus of the talk

Geological situation

Cores 1 to 7 (+2 to 9 m)


Cores 22 to 28 (+21 to 30 m)


Cores 36 to 42 (+37 to 44 m)


Number of hits during drilling

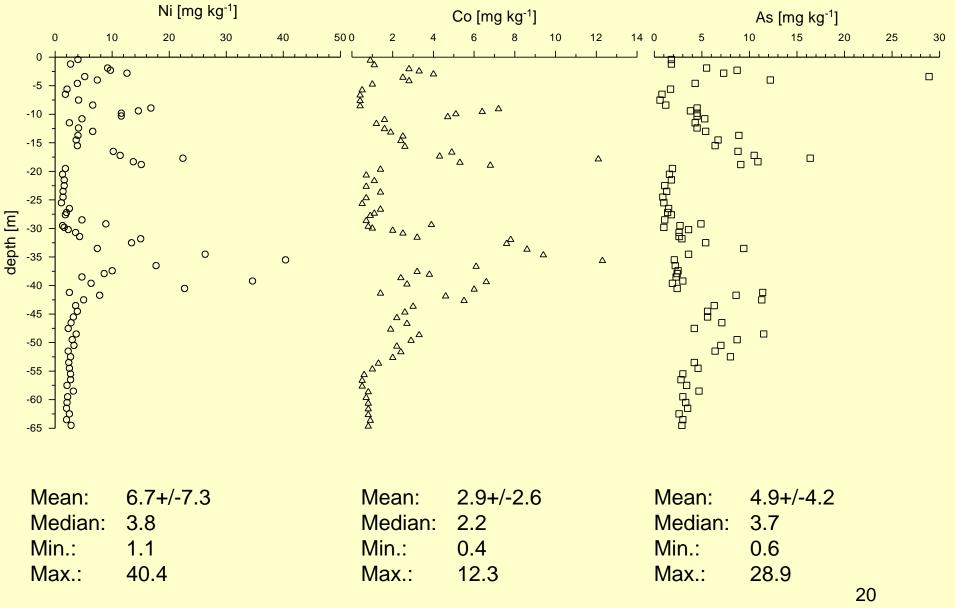
Cores 50 to 56 (+51 to 58 m)

pH (CaCl₂) values

<u>aerobe</u> pH 2.5...5.2

anaerobe pH 5.3...7.6

∆рН 0.3…5.0

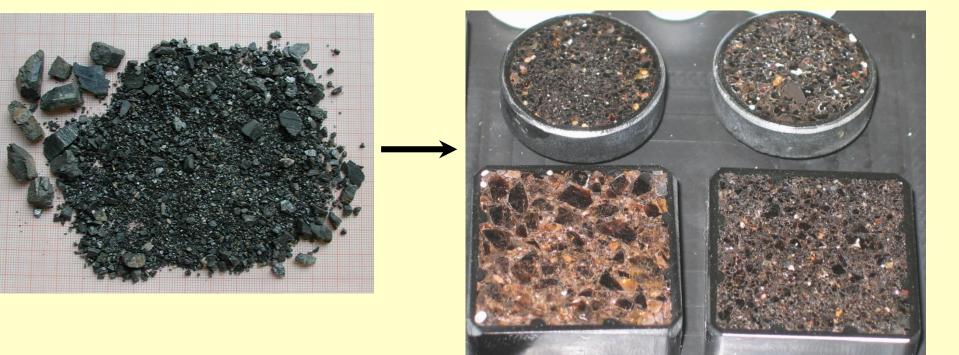

Inorganic reduced sulfur

	sulfide-sulfur [mg/kg]	depth [m]	sample
Holocene	3,000	3.00 - 3.70	#2781
sulfides	480	9.00 - 9.72	#2789
	<loq*< td=""><td>17.51 – 18.00</td><td>#2801</td></loq*<>	17.51 – 18.00	#2801
	<loq<sup>*</loq<sup>	29.00 - 29.50	#2815
	150	31.72 – 32.00	#2821
	530	33.00 - 34.00	#2823
	500	35.00 - 36.00	#2825
Tertiary	500	41.38 - 42.00	#2835
sulfides	520	42.00 - 43.00	#2835
	770	48.00 - 49.00	#2841
	1,100	54.00 - 55.00	#2747
	880	61.07 – 62.00	#2854

* below limit of quality [50 mg/kg]

 $5 FeS_2 + 14 NO_3^- + 4 H^+ \rightarrow 5 Fe^{2+} + 7N_2 + 10 SO_4^{2-} + 2H_2O$

Total nickel, cobalt and arsenic

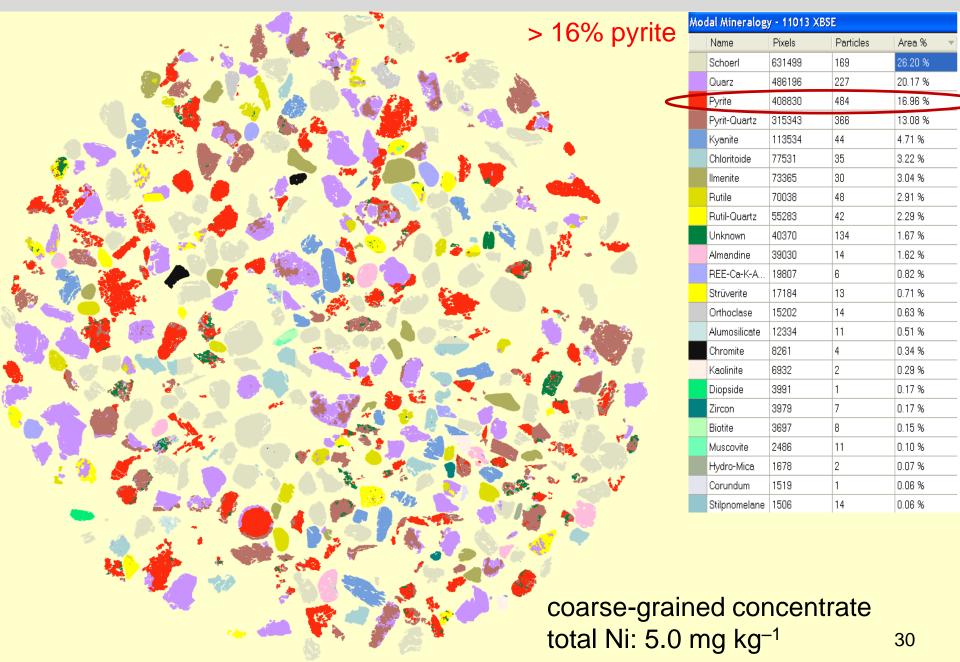


pyrite, 0.12% (Cremer et al. 2002) Fe_{0.9956}Ni_{0.0020}Co_{0.0024}As_{0.0038}

Mineralogy of heavy minerals

pre-concentration

thin polished section

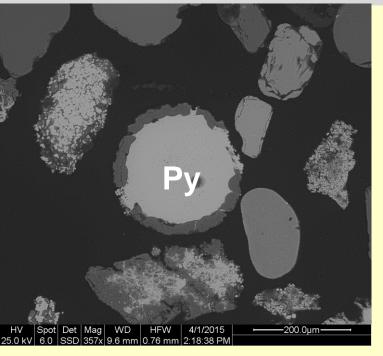


Mineralogy of heavy minerals

Scanning Electron Microscope (SEM) / Mineral Liberation Analysis (MLA); energy dispersive X-ray spectroscopy (EDX), wave-length dispersive X-ray spectroscopy (WDX)

Mineralogy of heavy minerals (42 to 43 m)

Mineralogy of heavy minerals (35 to 36 m)


	-		10	/ · · / M	odal Mineralog	y - 110 <u>03 XB</u> S	SE	
			×_ <1%	6 pyrite 🛛 💾	Name	Pixels	Particles	Area % 👻
• • •	1 A.		2.5.0		Almandine	953705	692	29.84 %
					Ilmenite	550819	400	17.23 %
	PI	2 <u>-</u>			Hornblende	405929	325	12.70 %
					Rutile	287299	209	8.99 %
				4	Schoerl	142942	90	4.47 %
				268	Quarz	139941	219	4.38 %
					Rutil-Quartz	138620	169	4.34 %
					Zircon	117307	103	3.67 %
					Kyanite	103159	65	3.23 %
	S				Chloritoide	61857	45	1.94 %
					Titanite	37332	48	1.17 %
					Apatite	33606	31	1.05 %
					Pyrite	28876	40	0.90 %
		ᆽ 🔨 🏹 📥			Plagioclase	26900	70	0.84 %
		1. 2 -			Muscovite	22409	41	0.70 %
		1 - A .			Pyroxene-F	20867	23	0.65 %
					Unknown	15121	79	0.47 %
	A 24				Epidote	14539	14	0.45 %
					Orthoclase	12726	21	0.40 %
					Stilpnomelane		54	0.39 %
					Diopside	11010	11	0.34 %
044 0 0 0 0 0					Albite	9585	22	0.30 %
					Chromite	9404	6	0.29 %
	100	10	1 1 1 1 1 1 1 1		Biotite	6653	6	0.21 %
					Kaolinite	6126	8	0.19 %
						5624	23	0.18 %
				19 M 9	Pyrit-Quartz	5018	24	0.16 %
				9 A 4	Hydro-Mica	4635	10	0.15 %
					Strüverite	3808	21	0.12 %
	1. Sie			1				
	ē 🖡 🖣 🛃							
	8 . 62			fine-grain	ed con	centra	ate ₃₁	
							31	
				total Ni: 4	u.4 mg	Kg ⁻¹		
					U	-		

Mineralogy of heavy minerals

- crystalline pyrite
- relatively high in Ni
- detrital

Mineralogy of heavy minerals

- framboidale pyrite ('raspberrylike)
 - relatively low in Ni
 - in situ formation?

Mineralogy of heavy minerals (33 to 34 m)

	Name	Pixels	Particles	Area % 🚽
	Almandine	815725	165	25.82 %
	Ilmenite	544518	138	17.24 %
	Kyanite	348529	69	11.03 %
	Quarz	333138	109	10.55 %
	Schoerl	188754	55	5.98 %
	Rutile	139647	49	4.42 %
	Chloritoide	132628	26	4.20 %
	Topaz	114963	20	3.64 %
	Pyrit-Quartz	74273	50	2.35 %
	Rutil-Quartz	63514	39	2.01 %
	Plegicelase	37333	30	1.82 %
	Chromite	46518	6	1.47 %
	Pyrite	40352	23	1.28 %
	Alumosilicate	36195	36	1.15 %
	Zircon	94057		
	20000	34857	18	1.10 %
	Kaolinite	24580	18 10	1.10 % 0.78 %
_				
	Kaolinite	24580	10	0.78 %
	Kaolinite Hornblende	24580 23894	10 30	0.78 % 0.76 %
	Kaolinite Hornblende Hydro-Mica	24580 23894 23259	10 30 12	0.78 % 0.76 % 0.74 %
	Kaolinite Hornblende Hydro-Mica Pyroxene-F	24580 23894 23259 23244	10 30 12 7	0.78 % 0.76 % 0.74 % 0.74 %
	Kaolinite Hornblende Hydro-Mica Pyroxene-F Unknown	24580 23894 23259 23244 20012	10 30 12 7 76	0.78 % 0.76 % 0.74 % 0.74 % 0.63 %
	Kaolinite Hornblende Hydro-Mica Pyroxene-F Unknown Albite	24580 23894 23259 23244 20012 16666	10 30 12 7 76 26	0.78 % 0.76 % 0.74 % 0.74 % 0.63 % 0.53 %
	Kaolinite Hornblende Hydro-Mica Pyroxene-F Unknown Albite Epidote	24580 23894 23259 23244 20012 16666 14104	10 30 12 7 76 26 9	0.78 % 0.76 % 0.74 % 0.74 % 0.63 % 0.53 % 0.45 %
	Kaolinite Homblende Hydro-Mica Pyroxene-F Unknown Albite Epidote Muscovite	24580 23894 23259 23244 20012 16666 14104 13309	10 30 12 7 76 26 9 31	0.78 % 0.78 % 0.74 % 0.74 % 0.63 % 0.53 % 0.45 % 0.42 %
	Kaolinite Hornblende Hydro-Mica Pyroxene-F Unknown Albite Epidote Muscovite Stilpnomelane	24580 23894 23259 23244 20012 16666 14104 13309 7620	10 30 12 7 76 26 9 31 35	0.78 % 0.76 % 0.74 % 0.74 % 0.63 % 0.53 % 0.45 % 0.42 % 0.24 %

chromite: (Fe,Mg)Cr₂O₄

Nickel is sequestered in

pyrite, altered crystals (high in Ni) pyrite, framboidale (low in Ni) chromite, extremely stable mineral iron oxides, under investigation

 $10Fe^{2+} + 2NO_3^{-} + 24H_2O \rightleftharpoons N_2 + 10Fe(OH)_3 + 18H^+$

 \rightarrow iron oxides as adsorbents for Ni (pH)

Conclusions

1)This reaction is possible:

 $5FeS_2 + 14NO_3^- + 4H^+ \rightarrow 5Fe^{2+} + 7N_2 + 10SO_4^{2-} + 2H_2O$

 \rightarrow explaining elevated sulfate and ferrous iron concentrations

2) Nickel is mainly hosted in altered "crystalline" pyrite which can be oxidized by nitrate

 \rightarrow explaining elevated nickel concentrations

3) Co-mobilization of arsenic and cobalt should be considered

Mobilization of nickel in a German

4) Formation of iron oxides by industrial agrifted tineaced by industrial agriculture?

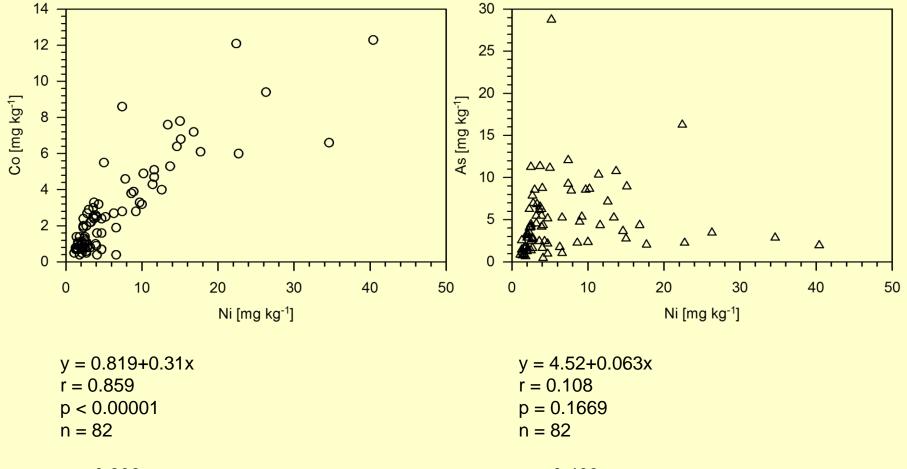
5) Nitrate originates from industrial agriculture

Acknowledgments

We are grateful to

Wasser- und Abwasser-Zweckverband (WAZ) Neuenhaus,

Niedergrafschaft


Mr. Hans

Mr. Schnieders

for financial and technical support.

Thank you very much for your attention!

Total nickel, cobalt, and arsenic

 $r_{s} = 0.806$

 $r_{s} = 0.409$